Separable covariance arrays via the Tucker product, with applications to multivariate relational data

نویسنده

  • Peter D. Hoff
چکیده

Modern datasets are often in the form of matrices or arrays, potentially having correlations along each set of data indices. For example, data involving repeated measurements of several variables over time may exhibit temporal correlation as well as correlation among the variables. A possible model for matrix-valued data is the class of matrix normal distributions, which is parametrized by two covariance matrices, one for each index set of the data. In this article we describe an extension of the matrix normal model to accommodate multidimensional data arrays, or tensors. We generate a class of array normal distributions by applying a group of multilinear transformations to an array of independent standard normal random variables. The covariance structures of the resulting class take the form of outer products of dimension-specific covariance matrices. We derive some properties of these covariance structures and the corresponding array normal distributions, discuss maximum likelihood and Bayesian estimation of covariance parameters and illustrate the model in an analysis of multivariate longitudinal network data. Some key words: Gaussian, matrix normal, multiway data, network, tensor, Tucker decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilinear Tensor Regression for Longitudinal Relational Data.

A fundamental aspect of relational data, such as from a social network, is the possibility of dependence among the relations. In particular, the relations between members of one pair of nodes may have an effect on the relations between members of another pair. This article develops a type of regression model to estimate such effects in the context of longitudinal and multivariate relational dat...

متن کامل

A representation theorem for stochastic processes with separable covariance functions, and its implications for emulation

Many applications require stochastic processes specified on twoor higherdimensional domains; spatial or spatial-temporal modelling, for example. In these applications it is attractive, for conceptual simplicity and computational tractability, to propose a covariance function that is separable; e.g. the product of a covariance function in space and one in time. This paper presents a representati...

متن کامل

Optimizing the Input Covariance for MIMO Channels

A multivariate Gaussian input density achieves capacity for multiple-input multiple-output flat fading channels with additive white Gaussian noise and perfect receiver channel state information. Capacity computation for these channels reduces to the problem of finding the best input covariance matrix, and is in general a convex semi-definite program. This paper presents Kuhn-Tucker optimality c...

متن کامل

Equivariant and scale-free Tucker decomposition models

Analyses of array-valued datasets often involve reduced-rank array approximations, typically obtained via least-squares or truncations of array decompositions. However, least-squares approximations tend to be noisy in high-dimensional settings, and may not be appropriate for arrays that include discrete or ordinal measurements. This article develops methodology to obtain low-rank model-based re...

متن کامل

Equivariant minimax dominators of the MLE in the array normal model

Inference about dependencies in a multiway data array can be made using the array normal model, which corresponds to the class of multivariate normal distributions with separable covariance matrices. Maximum likelihood and Bayesian methods for inference in the array normal model have appeared in the literature, but there have not been any results concerning the optimality properties of such est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010